Significance of drone technology for achievement of the United Nations sustainable development goals

Volume 4, Issue 3
Pages: 115—120

H. Kitonsa —
Ural Federal University (Yekaterinburg, Russia)
S. V. Kruglikov —
Ural Federal University (Yekaterinburg, Russia)

Download full text

The drone technology, which originated in military applications, is now widely used for commercial, professional, industrial and private purposes. Applications of Unmanned Aerial Vehicles (UAVs), commonly known as ‘drones’, include different sectors of economy, for example, agriculture, transport, infrastructure, entertainment, and telecommunications. Not only are drones eco-friendly gadgets that allow to reduce the amount of carbon dioxide emissions, but they are also time- and cost-efficient. Thus, drones can prove to be a major force for good as they hold massive potential for being used to meet the sustainable development goals (SDGs) set by the United Nations Organization and adopted in 2015. Developing countries, for instance those of Sub-Saharan Africa, are facing famine, epidemic diseases, poverty and other challenges. All these problems can be addressed with the help of the drone technology.
The main objective of this paper is to identify the sectors that are most likely to be influenced by the drone technology and to highlight the scenarios in which this technology can influence the achievement of the SDGs. One of the most promising spheres in this respect is the usage of drones as delivery vehicles in agriculture, e-commerce, and health care. Moreover, drones can be effective for monitoring and surveillance in international and domestic law enforcement, wildlife preservation and scientific research.

Keywords: drone technology, unmanned aerial vehicles, sustainable development goals, United Nations, agricultural drones, drone applications, drone risks



1. Pinstrup-Andersen, P., Rahmanian, M., Allahoury. A., et at. (2015). Water for Food Security and Nutrition: A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. FAO: Rome, Italy. Retrieved from
2. Mabhaudhi, T., Chibarabada, T., & Modi, A. (2016). Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 13(1), 107. doi: 10.3390/ijerph13010107
3. Crosby, L., Jayasinghe, D., McNair, D. (2013). Save the Children. Food for Th ought: Tackling Child Malnutrition to Unlock Potential and Boost Prosperity. London, UK: Save the Children. Retrieved from
4. Food and Agriculture Organization. (1996). Th e Rome Declaration on World Foods Security. Population and Development Review, 22, 14–17.
5. Beegle, K., Christiaensen, L., Dabalen, A., & Gaddis, I. (2016). Poverty in a Rising Africa. Th e World Bank. Retrieved from
6. Livingston, G., Schonberger, S., & Sara, D. (2011). Sub-Saharan Africa: Th e State of Smallholders in Agriculture. Rome: Via Paolo Di Dono. Retrieved from
7. Lu, Y., Nakicenovic, N., Visbeck, M., & Stevance, A. S. (2015). Five Priorities for the UN SustainableDevelopment Goals. Nature, 520(7548), 432–433. doi: 10.1038/520432a
8. Sachs, J. D. (2012). From Millennium Development Goals to Sustainable Development Goals. The Lancet, 379(9832), 2206–2211. doi: 10.1016/S0140-6736(12)60685-0
9. Mougeot, L. J. (2006). Growing Better Cities: Urban Agriculture for Sustainable Development. IDRC. Retrieved from les/openebooks/226-0/index.html
10. Tebbutt, E., Brodmann, R., Borg, J., MacLachlan, M., Khasnabis, C., & Horvath, R. (2016). Assistive Products and the Sustainable Development Goals (SDGs). Globalization and Health, 12(1), 79. doi: 10.1186/s12992-016-0220-6
11. Brundtland, G. H. (1985). World Commission on Environment and Development. Environmental Policy and Law, 14(1), 26–30.
12. Marin, L. (2016). Th e Humanitarian Drone and the Borders: Unveiling the Rationales Underlying the Deployment of Drones in Border Surveillance. In: The Future of Drone Use (pp. 115–132). TMC Asser Press, Th e Hague. doi: 10.1007/978-94-6265-132-6_6
13. Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the Current State of UAV regulations. Remote Sensing, 9(5), 459. doi: 10.3390/rs9050459
14. Tripicchio, P., Satler, M., Dabisias, G., Ruff aldi, E., & Avizzano, C. A. (2015). Towards Smart Farming and Sustainable Agriculture with Drones. In 2015 International Conference on Intelligent Environments, 15–17 July 2015, Prague, Czech Republic (pp. 140–143). IEEE. doi: 10.1109/IE.2015.29
15. Krishna, K. R. (2016). Push Button Agriculture: Robotics, Drones, Satellite-Guided Soil and Crop Management. Apple Academic Press.
16. Bamburry, D. (2015). Drones: Designed for Product Delivery. Design Management Review, 26(1), 40–48.
17. King, A. (2017). Technology: Th e Future of Agriculture. Nature, 544(7651), 21–23. doi: 10.1038/544S21a
18. DeGarmo, M., Nelson, G. (2004). Prospective Unmanned Aerial Vehicle Operations in the Future National Airspace System. In AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum. Chicago: Illinois. doi: 10.2514/6.2004-6243
19. Haidari, L. A., Brown, S. T., Ferguson, M., Bancroft , E., Spiker, M., Wilcox, A., Ambikapathi, R., Sampath, V., Connor, D. L., & Lee, B. Y. (2016). Th e Economic and Operational Value of Using Drones to Transport Vaccines. Vaccine, 34(34), 4062–4067. doi: 10.1016/j.vaccine.2016.06.022
20. Ackerman, E., & Strickland, E. (2018). Medical Delivery Drones Take Flight in East Africa. IEEE Spectrum, 55(1), 34–35. doi: 10.1109/MSPEC.2018.8241731
21. Glauser, W. (2018). Blood-Delivering Drones Saving Lives in Africa and Maybe Soon in Canada. CMAJ, 190(3), E88–E89. doi: 10.1503/cmaj.109-5541
22. Van de Voorde, P., Gautama, S., Momont, A., Ionescu, C. M., De Paepe, P., Fraeyman, N. (2017). Th e Drone Ambulance [A-UAS]: Golden Bullet or Just a Blank? Resuscitation, 116, 46–48. doi: 10.1016/j.resuscitation.2017.04.037
23. Câmara, D. (2014). Cavalry to the Rescue: Drones Fleet to Help Rescuers Operations over Disasters Scenarios. In 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 16–19 Nov. 2014, Antibes Juan-les-Pins, France. IEEE. doi: 10.1109/cama.2014.7003421
24. Hattenberger, G., Bronz, M., Gorraz, M. (2014). Using the Paparazzi UAV System for Scientific Research. In IMAV 2014: Proceedings of the International Micro Air Vehicle Conference and Competition 2014, 12–15 Aug. 2014 (pp. 247–252). Delft : Delft University of Technology. doi: 10.4233/uuid:b38fb db7-e6bd-440d-93be-f7dd1457be60
25. Custers, B. (Ed.) (2016). Future of Drone Use: Opportunities and Th reats from Ethical and Legal Perspectives. TMC Asser Press. doi: 10.1007/978-94-6265-132-6
26. Alexis, P. (2017). R-Tourism: Introducing the Potential Impact of Robotics and Service Automation in Tourism. Ovidius University Annals, Series Economic Sciences, 17(1), 211–216. Retrieved from
27. Mirk, D., & Hlavacs, H. (2014). Using Drones for Virtual Tourism. In: INTETAIN 2014: Proceedings of the 6th International Conference on Intelligent Technologies for Interactive Entertainment, Chicago, IL, USA, July 9–11, 2014. (pp. 144–147). Springer, Cham. doi: 10.1007/978- 3-319-08189-2_21
28. Goodchild, A., & Toy, J. (2018). Delivery by Drone: An Evaluation of Unmanned Aerial Vehicle Technology in Reducing CO2 Emissions in the Delivery Service Industry. Transportation Research Part D: Transport and Environment, 61, 58–67. doi: 10.1016/j.trd.2017.02.017
29. Dunnington, L., & Nakagawa, M. (2017). Fast and Safe Gas Detection from Underground Coal Fire by Drone Fly Over. Environmental Pollution, 229, 139–145. doi: 10.1016/j.envpol.2017.05.063
30. Lunstrum, E. (2014). Green Militarization: Anti-Poaching Eff orts and the Spatial Contours of Kruger National Park. Annals of the Association of American Geographers, 104(4), 816–832. doi: 10.1080/00045608.2014.912545
31. Maharana, S. (2017). Commercial Drones. In Proceedings of IRF International Conference, Mumbai, India.
32. Straub, J. (2014). Unmanned Aerial Systems: Consideration of the Use of Force for Law Enforcement Applications. Technology in Society, 39, 100–109. doi: 10.1016/j.techsoc.2013.12.004
33. Cracknell, A. P. (2017). UAVs: Regulations and Law Enforcement. International Journal of Remote Sensing, 38(8–10), 3054–3067. doi: 10.1080/01431161.2017.1302115

In Russian:

Х. Китонса — Уральский федеральный университет (Екатеринбург, Россия)
С. В. Кругликов — Уральский федеральный университет (Екатеринбург, Россия)

Значимость технологии дронов в достижении целей устойчивого развития ООН 

Технология беспилотных летательных аппаратов, созданная военными, в настоящее время широко используется в коммерческих, профессиональных, промышленных и частных целях. Беспилотные летательные аппараты (БПЛА), широко известные как «дроны», используются в различных секторах экономики, например, сельском хозяйстве, транспорте, инфраструктуре, развлечениях и телекоммуникациях. Дроны не только экологичны и позволяют сократить количество выбросов углекислого газа, но они также экономичны в терминах времени и финансовых затрат. Таким образом, беспилотные летательные аппараты могут оказаться серьезной силой, поскольку они обладают огромным потенциалом для использования в целях достижения целей устойчивого развития (SDG), установленных Организацией Объединенных Наций и принятых в 2015 году. Развивающиеся страны, например, страны, расположенные к югу от Сахары, сталкиваются с голодом, эпидемическими заболеваниями, нищетой и другими проблемами. Все эти проблемы можно решить с помощью технологии беспилотных летательных аппаратов.
Основная цель этой статьи — выявить сектора, на которые, скорее всего, повлияет технология беспилотных летательных аппаратов, и выделить сценарии, в которых эта технология может повлиять на достижение целей устойчивого развития. Одной из наиболее перспективных сфер в этом отношении является использование дронов в качестве средств доставки в сельском хозяйстве, электронной торговле и здравоохранении. Более того, беспилотные летательные аппараты могут быть эффективными для мониторинга и наблюдения в международных и внутренних правоохранительных органах, охране дикой природы и научных исследованиях.

Ключевые слова: беспилотная техника, беспилотные летательные аппараты, цели устойчивого развития, Организация Объединенных Наций, сельскохозяйственные беспилотные летательные аппараты, применение беспилотных летательных аппаратов

© H. Kitonsa, S. V. Kruglikov